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Abstract. We study an extended version of the discrete N-vector (or cubic) ferromagnetic 
model within a real space renormalisation group approach which preserves the two-spin 
correlation function. The N-evolution (for real values of N )  of the Wheatstone-bridge 
hierarchical lattice phase diagram, which presents paramagnetic, intermediate (nematic- 
like) and ferromagnetic phases, as well as of the thermal ( U )  and crossover (4 )  critical 
exponents, is presented. The self-avoiding walk problem is recovered in the N -+ 0 limit, 
and the so-called ‘corner rule’ is re-obtained in a larger context. The king,  N- and 2N-state 
Potts ferromagnets are recovered as particular cases. An interchange of stability occurs at 
N = N* = 6.9 in such a way that the 2N-state Potts special point (where all three existing 
phases join) is multicritical if N < N * ,  but only critical if N > N *  (consistently 4( N * )  = 0). 
For the cubic model, U( N )  presents a maximum at N = N,,, = 1.5. The results are exact, 
for all N ,  for the Wheatstone-bridge hierarchical lattice, and approximate, for N =s 2, for 
the square lattice. Last but not least, we discuss the connection between the present 
approach and the phenomenological renormalisation group. 

1. Introduction 

In recent years several real space renormalisation group (RG)  methods have been 
developed whose transformations describe with reasonable approximation spin models 
on Bravais lattices, and become exact for the same systems (if classical) on hierarchical 
structures. The Migdal-Kadanoff approximation as well as the methods developed in 
[l-41 are examples of this kind of approach. Even if sometimes the approximations 
involved are not able to reproduce important qualitative features of models on Bravais 
lattices (like the first-order transitions of a Potts ferromagnet for a sufficiently high 
number of states [ 5 ] ) ,  other results can even turn out to be exact, especially when the 
choice of the basic RG clusters respects some important symmetries of the infinite 
system (like self-duality for the square lattice). Moreover, as discussed in section 4 
of the present paper, if applied to big clusters, the methods of [ 1-41 can be shown to 
have the same potentialities as a phenomenological renormalisation approach [ 6 ] ,  in 
which the interfacial tension between different domains in a block is used, in place of 
the correlation length, as the basic scaling quantity. As illustrations of these poten- 
tialities, see [7, 81. 
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In this context, particularly appealing is the possibility of treating, within relatively 
simple renormalisation schemes, whole classes of models, like the q-state Potts model 
for arbitrary q, or the Z ( N )  model for arbitrary N. Whereas for the former the 
renormalisation transformation considered does not require a parameter space with 
dimension increasing with q, for the most general Z( N) model such dimension grows 
linearly with N, making the RG quickly intractable. An important consequence of 
these facts is that, whereas for the Potts model it is possible to have the results for 
arbitrary real values of q (and consequently the important q +  1 and q + O  limits, 
respectively the bond percolation and resistor problems, are easily accessible), to obtain 
for the Z ( N )  model results which are analytical in N is a non-trivial task. 

The main purpose of this paper is to present results, for arbitrary real values of 
N, for a particular realisation of the Z(2N) model, the so-called discrete N-oector (or 
N-component) model or even cubic model. This problem is tractable because, as we 
shall see, it presents the considerable advantage of requiring, in order to remain closed 
under renormalisation, a parameter space which is, for any N, at most bidimensional. 
The cubic model has already been considered within various theoretical frameworks, 
such as the mean-field approximation [9], Niemejer and van Leeuwen RG [ 101, Migdal 
RG [ll], variational and dedecoration RG [12], a Monte Carlo-like approach [13], 
conformal invariance [ 141 and Monte Carlo RG [ 151. Possible physical motivations 
(e.g. the study of rare-earth compounds) are discussed in [9,11, 121. Here we study 
the cubic model within a RG approach which preserves appropriate two-spin correlation 
functions. All the results are exact for the Wheatstone-bridge hierarchical lattice; they 
are either exact (e.g. parts of the phase diagram for N s 2 )  or approximate (e.g. the 
critical exponents v and 4) for the square lattice. 

In section 2 we introduce the model and the formalism; in section 3 we present 
the general results as well as those corresponding to the N + 0 limit (self-avoiding 
walk); in section 4 we make the connection between the present approach and the 
phenomenological RG; finally we conclude in section 5 .  

2. Model and formalism 

The cubic model elementary interaction between spins i and j is described by the 
following dimensionless Hamiltonian: 

pXu = - NKSi * Sj (1) 
where p = l/kBT and where the spin Si at any given site is an N-component unitary 
vector which can point only along the 2 N  positive or negative orthogonal coordinate 
directions, i.e. Si = (kl, O,O, . . . , 0 )  or (0, kl, 0, .  . . , 0 )  o r . .  . or (O,O, 0, .  . . , kl). This 
interaction is a discrete version of the classical N-vector model. In what follows we 
shall consider a generalised form of it, namely 

(2) 
which will prove to be closed under the RG. 

Hilhorst [ 101 has verified that model (1) reproduces, in the N + 0 limit for L = 0, 
the grand-canonical statistics of a self-avoiding walk (SAW) with step fugacity K. This 
result also holds for model (2) and extends to discrete spins the de Gennes result [ 161 
for continuous spins; it was in fact exploited for the early RG analysis of the SAW 

mentioned above [lo]. For the particular case N = 1, model (2) reduces to the spin-f 

p%'u = -NKSi * Sj-  N2L(S i  * S,)' 
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Ising model for all values of L. For N = 2 we recover the Z(4) model (see, for example, 
[4] and references therein). If NL = K ,  model (2) recovers the 2N-state Potts model 
with dimensionless coupling constant 2NK. If K = 0, model (2) recovers the N-state 
Potts model with dimensionless coupling constant N2L.  For finite K and NL/IKI + 00 

we recover, for all values of N, the spin-; Ising model with dimensionless coupling 
constant NK.  Indeed, the second term of Hamiltonian (2) becomes dominant, and 
therefore only parallel and antiparallel spin configurations are possible at any finite 
temperature. To summarise all these particular situations, let us say, by using the 
notation of the ( N m ,  N , )  model introduced by Domany and Riedel [ l l ] ,  that Hamil- 
tonian (2) corresponds to the ( N ,  2) model. 

Hamiltonian (2) is in general associated with a three-level system. For instance, 
if we assume K > N L  > 0, we have a fundamental level whose energy is - N (  K + NL) 
and whose degeneracy is 2 N ;  the energy of the first excited level is 0 and its degeneracy 
is 4 N ( N  - 1); finally, the energy of the second excited level is N ( K  - NL) and its 
degeneracy is 2N. 

If we consider now a two-rooted graph made by a series array of two bonds with 
coupling constants ( K " ) ,  L'") and ( K ( 2 ) ,  L'2') respectively, its Hamiltonian will be 
given by 

PXp,23=-NK"'Sl *S3-N2L(11(S1 . S 3 ) 2 - N K ( 2 J S 3 . S 2 - N 2 L ( 2 J ( S 3  s S ~ ) ~  (3) 
where SI and S2 are the terminal spins and S3 the internal one. For all statistical 
equilibrium properties which do not directly involve S 3 ,  P X I 2 ,  can be replaced by 

/3Xi2=-NK'"S1 * S 2 - N 2 L ( S ) ( S I  - S2)'- Kh (4) 

exp(-P%J = Tr3 ( 5 )  

(s stands for series) where we impose 

with K " ) ,  L") and Kb to be determined. The results (except for Kb, which is not 
important in the present context) can be written as follows: 

r = l , 2  ( 6 )  
= (11 ( 2 )  

r t r  t r  

where the uector thermal transmissivity ( t l  , t 2 )  (see [2,4,12]) is related to ( K ,  L )  through 
the definitions 

1 - exp( -2NK) 
1 + 2 ( N - 1 )  exp[-N(K+NL)]+exp(-2NK) 

t l  = 

and 

1-2 exp[-N(K+NL)]+exp(-2NK) 
1 + 2 ( N  - 1) exp[ - N (  K + NL)] +exp(-ZNK) ' 

t 2  = 

For the 2N-state Potts model ( K  = N L )  we have t ,  = t 2 ,  for the N-state Potts model 
( K  = 0) we have t, = 0, and for the Ising model (NL/IKI + 00) we have t2 = 1. In all 
these cases we recover the definition of thermal transmissivity introduced in [2]. For 
N = 2, ( t l  , t 2 )  reproduces the vector transmissivity of the Z(4) model as defined in [4]. 
It is finally worth mentioning that the cubic model ( L  = 0) corresponds to the equation 
(N-2)t :+2t2= Nt:.  

Equations ( 7 )  yield, through inversion, 

1 - t 2  

exp[-N(K + NL)] = ( 8 a )  1 + Nt ,  + ( N -  l ) f *  
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and 

1 - N t , +  ( N  - l)t2 
1 + Nt ,  + ( N  - 1 ) t z ’  

exp( -2NK) = 

We note that for N = 2  and only then, the functional forms of the transformation 
( t , ,  t , )a(exp[-N(K + NL)], exp(-2NK)) are one and the same. In other words, if 
we define ( t , ,  f 2 )  = F,(exp[-N(K + NL)], exp(-2NK)), in general Fi l  # F N ,  but 
F;’ = F 2 .  This fact will make, as we shall see further on, a special case of the N = 2 
model. 

Let us now consider a parallel (instead of series) array of two bonds with coupling 
constants ( K ‘ ” ,  L‘”) and ( K ” ’ ,  L‘2’). The equivalent coupling constants ( K ( p ) ,  L‘p’) 
will be now given by 

(9a)  

( 9 6 )  

K(P) = K ( l ) +  K(2) 

and 
L‘P’= L‘l)+L‘2’ 

or equivalently 

1 - Nt , + ( N - 1 ) t2  

1 + Nt , + ( N - 1 ) t2 
tP = 

1 - t ,  
1 + Nt 1 + ( N - 1 ) r 2 .  

p = 
2 -  

For a full discussion of this kind of ‘dual’ variable see [17]. 
Now that we have introduced the variables t l  and t2 (very convenient at the present 

time for representing the RG flow diagrams, and possibly in future for formulating a 
break-collapse method [2,4, 17, 18]), let us focus on the ferromagnetic model on the 
square lattice. The Hamiltonian will be given by 

where the sums run over all pairs of nearest-neighbour sites, K > 0 and L a  - K /  N. 
In a way similar to what happens for the Potts ferromagnet, the L = 0 transition is 

expected to become first order on a Bravais lattice for large enough N. Mean-field 
theory predicts a first-order transition for N > 3 [9]. Real space renormalisation group 
calculations in two dimensions indicated a first-order transition for N > N, = 2 [15]. 
At the present moment we will leave out the discussion of the aspects connected with 
the first-order transition, and focus more on the peculiar features of the phase diagram 
of hierarchical lattices, which can be obtained exactly without the introduction of 
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vacancies [ 121. The hierarchical lattice we consider here in particular is that correspond- 
ing to the Wheatstone bridge cluster of figure 1. This cluster, due to its self-duality, 
guarantees coincidence of the critical couplings with those of the infinite square lattice, 
in all cases in which the model becomes self-dual. 

To construct our RG we impose 

exp(-pX9’12) = exp(-PX1234) (13) 
3,4 

where Xi2  and 2 , 2 3 4  respectively are the Hamiltonians associated with the small and 
large graphs of figure 1 ( X i 2  in particular is explicitly written in (4) with ( K ’ ,  L‘ )  
replacing ( K ” ’ ,  L”) ) ) .  Equation (13) yields 

and 

with 

G ,  = exp(5N2L)[exp(5NK) + exp( -3NK) + 2 exp( - N K ) ]  

+ 2 ( N  - 1){2 exp(2N2L)[exp(2NK) +exp(-2NK)] 

+ e x p ( N 2 L ) [ e x p ( N K ) + e x p ( - N K ) ] + 2 N - 4 }  (16) 

+ e x p ( ~ ~ ~ ) [ e x p ( N K ) + e x p ( - N K ) ] + 2 N - 4 }  (17) 

G2 = 2 exp( 5 N2L)[exp(NK) + exp( - N K  )I + 2( N - 1)){4 exp(2N2L) 

G3 = 2 [exp( 3 N2L)[exp(3 NK ) + 3 exp( - NK )]  + exp(2N2L) 

x [ exp(2NK) + 2 + exp( - 2 N K ) l  

+ ( N  - 2){5 exp( N2L)[exp( N K )  + exp(-NK)] + 2 N  - 6}0. (18) 

Equations (14) and (15) provide the RG recurrence relations we were looking for. 
For fixed N, the RG flow in the ( K ,  L )  space (or equivalently in the ( t ,  , t 2 )  space) will 
determine the phase diagram as well as the universality classes. The numerical values 
of thermal and crossover exponents ( Y  and 4 respectively) can be obtained through 
the calculation of the Jacobian matrix d(K’,  L’ ) /d(K,  L) on the various semistable or 
fully unstable fixed points. More specifically, if we denote by A ,  and A 2  the eigenvalues 
of the matrix we have the following. 

I 1 

K,Ll 

2 2 
b = l  b = 2  

Figure 1. Iteration associated with the Wheatstone-bridge RG (the full circles and the open 
circles respectively denote the internal and terminal sites of the graph). 
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(i)  A I  > 1 > A 2  for critical (semistable) fixed points, and 

In B 
In A I  

v=- 

where B is the linear expansion factor (B  = 2 for figure 1). 
(i i)  A I  > 1 and A 2  > 1 for multicrirical (fully unstable) fixed points, 

and 

In A 2  
In A I  

4=- 

where A 2  denotes that eigenvalue which, as N varies, tends to unity whereas A I  remains 
greater than unity. 

3. General results 

The phase diagrams for typical values of N are presented in figures 2( a )  (in the ( t ,  , t 2 )  
variables) and 2( b) (in the (1/K, N L / K )  variables). For a given value of N, the phase 
diagram presents three phases, namely the paramagnetic ( P; characterised by the fully 
stable fixed point t l  = t2 = 0), the ferromagnetic (F;  characterised by the fully stable 
fixed point t ,  = f 2  = 1) and the intermediate ( I ;  characterised by the fully stable fixed 
point ( t l ,  t 2 )  = (0, 1)) phases. The existence of three distinct phases is well known for 
N = 2 (Z(4) model). This structure analytically remains so for all values of N, including 
for N d 1 where it should be considered as a mathematical artefact. Indeed, for N = 1 
(Ising model), the P-I critical frontier should be considered as spurious, since for this 

1 

f z  O 

0. 5 1.0 
t, 

0 
0 1 2 3 4 5 6 

l+LN/K 

Figure 2. Phase diagram in the ( f , ,  i2) space for typical values of N :  P, F and I respectively 
denote the paramagnetic, ferromagnetic and intermediate phases. The arrows indicate the 
RC flow; the full squares and the full circles respectively indicate stable and unstable fixed 
points. The line f ,  = f2 corresponds to the 2N-state Potts model. ( b )  Phase diagram in the 
( l / K ,  1 + L N / K )  space for typical values of N. 
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model only two distinct phases exist, namely the ferromagnetic phase (F) and the 
paramagnetic phase ( P and I ) ;  as expected, the physically meaningful critical tem- 
perature for N = 1, does not depend on NL/ K (‘vertical’ line in figure 2 ( a ) ,  and 
‘horizontal’ line in figure 2( b) ) .  

The critical frontier corresponding to a given value of N contains four special 
points, namely three semistable fixed points (critical points) and a fully unstable point 
(multicritical point). Two of the three critical points are the king critical point 
( ( t l ,  t 2 ) = ( f i - 1 ,  1)) and the N-state Potts critical point ( ( t , ,  tz)=(O, l/(-+l)), 
The third and fourth special points are the 2N-state Potts special point ( t ,  = t2 = 
l/(m+ 1)) and the extendedcubic special point ( ( t , ,  t 2 )  = ( t f ,  t ; )  where the associated 
transmissivities and coupling constants are given in figures 3( a )  and 3( b )  respectively). 
For N < N *  = 6.9 the 2N-state Potts model corresponds to the multicritical point and 
the extended cubic model corresponds to the critical point; the situation is reversed 
for N > N*. At N = N *  a special multicritical point emerges as the 2N-state Potts 
and the extended cubic fixed points collapse; at this value of N the two models 
exchange stability. 

The thermal critical exponent vT as well as the crossover exponent 4 are shown 
in figures 4(a )  and 4(b) for the 2N-state Potts and the extended cubic models 

Figure 3. N dependence of the location of the extended cubic fixed point: ( a )  ( t , ,  t 2 )  

variables; ( b )  ( K ,  1+ N L / K )  variables. 

I 1 -  I 9lNl 
1 

0 5 10 15 20 0 s 69 i o  15 20 
N N 

Figure 4. N dependence of the thermal critical exponent v, and the crossover exponent 
+: ( a )  2N-state Potts model, ( b )  extended cubic model. 
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respectively. In particular, in figure 4(a)  we recover the well known values of vT for 
the Wheatstone-bridge hierarchical lattice Potts model, namely vT = 1.43 for the bond 
percolation model ( N  =f), and vT= 1.15 for the Ising model ( N  = 1); it is also worth 
mentioning that 4 = 1 for N = i. Also, in the N + CO limit we obtain vT = In 2/ln 5 = 0.43, 
in accordance with the conjecture [19,20] that vT should give l /d f  where df is the 
intrinsic fractal dimensionality. Finally, our numerical results suggest that, in the limit 
N + w ,  the exponents vT associated with the 2N-Potts and extended cubic models 
coincide. 

A limit of special interest is the N + 0 limit, as it corresponds to the self-avoiding 
walk problem (SAW). In the figure 3(b) we see that K c = ( d - 1 ) / 2 = 0 . 3 6 6  which 
corresponds to the exact critical fugacity for the Wheatstone-bridge hierarchical lattice 
(for the square lattice we have K,-0.3790 [21]). The corresponding value for vT is 
given by vT = In 2/ln(4 - A) = 0.85 (see figure 4( b ) ) ,  to be compared with the value a 
[21]. In fact, the present RG precisely recovers (and consequently further supports), 
in the N + 0 limit, the ‘comer rule’ [22]. Indeed, this rule provides the RG recursive 
relation K ’ =  2K2+2K3,  whose critical fixed point and thermal exponent are precisely 
K c = ( 8 - l ) / 2  and vT=ln2 / ln (4 -d ) .  

4. Connection with the phenomenological RG approach 

As stressed in the previous sections, the renormalisation procedure applied in this 
work [l-41 is exact for a hierarchical lattice, while it is expected to be a more or less 
good approximation for systems on a Bravais lattice. In this section we intend to better 
clarify the nature of this approximation by making explicit the connection between 
the present approach and the phenomenological RG [6] (see also [23]). 

To avoid unnecessary complications, let us focus on the particular case of the d = 2 
Ising model ( N =  1). We can omit vector notation and represent the spin at site i 
simply by SI = *la 

Successive clusters of the Wheatstone-bridge family are reported in figure 5 (the 
b = 1 and b = 2 clusters are shown in figure 1). On each of these clusters (with b( b - 1) 
internal spins), the summation procedure leading to the renormalised coupling constant 
K’ can be interpreted as the calculation of an interface free energy for blocks of the 
type indicated in figure 6. The spins on the upper and lower horizontal sides of the 
block are left out of the summation. Indeed, if we indicate by { S }  the configurations 
of the internal spins of the cluster (i.e. other than SI and S , )  we have: 

exp(K’S,S2+ g) = Tr { S )  exp(-PW{S}; SI, S2)) = Z S I S 2 ( K )  (22) 

2 2 
b - 3  b.4 

Figure 5. b = 3 and b = 4 generating graphs of the Wheatstone-bridge family of hierarchical 
lattices. 
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Figure 6. b = 3 and b = 4 blocks of spins respectively corresponding to those of figure 5 .  

where g is an appropriate spin-independent term. From (22) we obtain 

K ' =  K ' (  K ,  b )  = i[ln Z,, -In Z+-]. (23) 

This means that K '  is nothing but the dimensionless excess free energy produced by 
fixing the horizontal sides to (+) and (-), compared with the case in which both sides 
are fixed, say, to (+). By definition of the (dimensionless) surface tension a, we thus 
have 

K ' ( K ,  b )  = ( b  - l)U(K, b )  (24) 

where a ( K ,  b )  is expected to become independent of b in the b+oo limit (thermo- 
dynamic limit). 

From finite-size scaling [24] we expect, for K - K ,  and b -+ CO, 

a ( K ,  b ) -  b - ' a o ( b l S x ( K ) ) -  1/5(K, b )  (25) 

where & ( K )  is the correlation length of the infinite system, a. is a scaling function 
with ao(0) # 0, and 5( K ,  b )  is the correlation length in the finite block. 

If we now define, as is often done [ l ,  2,7], a renormalised coupling constant K,,, 
corresponding to a linear rescaling factor b /b '  ( b ' <  b ) ,  through the following cell to 
cell recurrence relation: 

K'(Kre, ,  b ' ) =  K ' ( K ,  6 )  (26) 

it follows, from (24) and (25) and for large b and b', that 

(27) 
b' 
b ((Kren, b ' )  =- 5 ( K  b ) .  

This is nothing but the definition of renormalised coupling constant in a phenomeno- 
logical approach [6]. It is clear that various choices can be made for the cells to be 
used. In particular, the standard choice in the phenomenological approach is finite 
x infinite strips, whereas here we are using finite x finite self-dual clusters. In view 
of the nice convergence of results generally obtained with phenomenological renormali- 
sation methods, the preceding arguments justify using the usual strategy for improving 
the results obtained herein (as well as in similar treatments) i.e., that of considering 
cell to cell transformations K + K,,,, as in (26), with both b and b' becoming increas- 
ingly large (as is usually done in the phenomenological RG). 

The above derivation can of course be easily generalised to the case of dimensionality 
d # 2, and to models other than the Ising model. 

Summarising, we see that the procedure we have used here should not be interpreted 
as another type of decimation RG approximation. Indeed, although we impose the 
correlation function to be preserved, we do so between the roots of the graphs, which 
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corresponds to imposing the surface free energy to be preserved in the Bravais blocks, 
whereas in the decimation procedures what is imposed is the preservation of the 
correlation function between two sites of the Bravais lattice. This makes a substantial 
difference since the decimation procedures, unless conveniently handled, introduce 
intrinsic difficulties related to the spin rescaling. These difficulties do not exist in the 
present approach. 

The present analysis makes it clear that the well known limitations of the Migdal- 
Kadanoff-like approaches are not due to the fact that correlation functions are 
preserved, but rather to the fact that diamond (or trees) choices for the graphs lead, 
even for large clusters, to topologies which are not at all those of the Bravais lattices 
which are supposed to be approached. 

5. Conclusion 

We have considered the criticality of the discrete N-vector ferromagnet in planar 
self-dual lattices. The real space renormalisation group approach we used exactly 
preserves correlation functions between the roots of conveniently chosen two-rooted 
graphs. The renormalisation leaves invariant not the standard discrete N-vector model 
(cubic model) but a generalised version thereof. The results are exact for the associated 
hierarchical lattices, and good estimates for the square lattice ( N  s 2). The phase 
diagram (including multicritical points) associated with fixed N, as well as the thermal 
and crossover exponents, are calculated. At a particular value of N (denoted N * )  an 
exchange of stability is observed between the Potts and cubic models ( N *  = 6.9 for 
the Wheatstone-bridge hierarchical lattice). In the N + O  limit we recover the self- 
avoiding walk, and give support to the ‘corner rule’ which has long been used in this 
problem. 

In addition to the above results, we have exhibited the connection between the 
present (correlation-function preserving) renormalisation procedure and the 
phenomenological renormalisation group. This connection makes clear that these two 
commonly used renormalisation procedures share essentially the same advantages and 
limitations. 
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